Обезвреживание газовых выбросов в производстве фенопластов

Обезвреживание газовых выбросов, содержащих фенол, формальдегид и метанол, осуществляется в основном методами абсорбции и адсорбции. При обработке больших потоков газа предпочтительнее применение 4абсорбции, которая отличается сравнительно невысокой энергоемкостью. Самым доступным поглотителем является вода, однако при водной очистке невозможно добиться большой глубины очистки.

Более перспективен метод хемосорбции, в котором вещества, загрязняющие воздух, нейтрализуются, реагируя с активной частью поглотительной жидкости. В качестве хемосорбентов находят применение водные растворы щелочи. Недостаток - взаимодействие содержащегося в воздухе углекислого газа со щелочью.

Обесфеноливание выбросов, содержащих значительные количества фенола, успешно осуществляется этим методом в абсорберах с псевдоожиженной шаровой насадкой (рис. 9).

Рис. 9. Абсорбер с псевдоожиженной шаровой насадкой: 1 — опорно-распределительная решетка; 2 - насадка; 3 - брызгоуловитель.

Адсорбционный метод для очистки отработанных газов производств фенопластов применяется реже, так как его реализация сопряжена с громоздкостью аппаратурного оформления процесса и высокой энергоемкостью регенерации адсорбента из-за осмоления поглощенных веществ. Однако адсорбция может оказаться достаточно приемлемой, если исключить регенерацию адсорбента, а отправлять его после насыщения на сжигание. Это осуществимо в том случае, когда концентрация фенола в отходящих потоках незначительна и возвращение его в производственный процесс не предусмотрено технологическим режимом.

Рис. 10. Принципиальная схема установки каталитического дожигания фенолсодержащнх газов: 1 — горелка; 2 — форкамера; 3 — печь; 4 — слой катализатора; 5 — теплообменник.

Очистку отработанного воздуха в производствах фенопластов можно проводить и каталитическим окислением на хромоникелевом контакте. Процесс глубокого окисления органических примесей осуществляется при 250—350 °С в установке, представленной на рис. 10. Фенолсодержащий поток газа при помощи вентилятора подается в теплообменник 5, где происходит его предварительный нагрев. Затем этот поток направляется в печь 3 для дальнейшего подогрева до температуры начала каталитического окисления (210 °С), причем на этот дополнительный подогрев потока требуется значительно меньше топлива, чем при глубоком огневом окислении. Окончательное обесфеноливание газов происходит в слое катализатора 4. В качестве окислительного катализатора могут использоваться пиролюзит, медно-хромовые контакты, а также контакты на основе благородных металлов. Очищенный в слое катализатора воздух проходит теплообменник 5, где отдает часть теплоты входящему в межтрубное пространство загрязненному воздуху, и выводится в атмосферу.

Технологические сдувки в производстве фенопластов целесообразно перед подачей газов на очистку пропускать через конденсационный тракт, охлаждаемый каким-либо хладоагентом, что позволяет значительно уменьшить содержание вредных веществ в отработанном воздухе цехов, производящих фенопласты.

Перед использованием в газоочистных установках полукокс активируется при 700—900 °С в токе перегретого водяного пара (в качестве активирующих добавок применяют СаСО3 и Н3РО4). Сорбционная емкость полукокса по фенолу составляет 8,5 - 14,5 % при начальной концентрации фенола в выбросах около 0,1 г/м3 и влажности потока 30 г/м3. После регенерации 70 % десорбированного фенола может быть возвращено в производство.

Известен способ обезвреживания фенола и формальдегида, путем окисления отработанных газов, содержащих фенол и формальдегид, озоном (степень превращения около 90 %) до углекислого газа и воды.

В некоторых производствах фенопластов, например при получении фенольных пресс-порошков, в атмосферный воздух выбрасывается пыль. Санитарная очистка отработанного воздуха в этих процессах достигается применением рукавных фильтров типа ФРОГ или ФРЭЖ с антистатическим полотном.

Расширение марочного ассортимента фенопластов вызывает необходимость непрерывного совершенствования действующих систем газоочистки и разработки новых методов обезвреживания газовых выбросов, содержащих фенол и его производные [5].

Другие материалы

Биоразнобразие Каспийского моря
Каспийское море-озеро, расположенное во внутриматериковой впадине на границе Европы и Азии, является самым большим внутренним водоемом на Земле с водосборной территорией около 3,5 млн. км2 и общей площадью около 400 000 км2 (за период инструментальных измерений площадь моря менялась приблизительно от 350 00 ...