Примеры использования вэжх в анализе объектов окружающей среды

При выборе аналитической техники, предназначенной для разделения, идентификации и количественного анализа упомянутых ПАУ необходимо учитывать следующие условия:

- уровень определяемых содержаний в исследуемых пробах;

- количество сопутствующих субстанций;

- применяемая аналитическая процедура (методика выполнения измерений);

- возможности серийной аппаратуры.

Разработка методики определения щелочноземельных элементов и магния методом ионной высокоэффективной жидкостной хроматографии

Разработка и совершенствование методов, позволяющих решать задачи анализа вод- важная проблема аналитической химии. Развитие высокоэффективной жидкостной хроматографии высокого давления стимулировало развитие нового направления в ионообменной хроматографии- так называемой ионной хроматографии. Синтез сорбентов для ионной хроматографии затруднен, поскольку к ни предъявляется довольно много требований. В связи с отсутствием коммерчески доступных высокоэффективных катионитов, была использована динамически модифицированная обращеная фаза, для чего был синтезирован модификатор: N-гексадецил-N-деканоил-парамино- беноилсульфокислоты этил- диизопропиламмоний (ДГДАСК), где гидрофобный амин, содержащий группу SO3-, способный к катионному обмену. После пропускания раствора модификатора поглощение при l = 260 нм достигало 6,4 единиц оптической плотности (° Е) с выходом на плато. Рассчитанная ионообменная емкость составляет 15,65 мкмоль. Так как катионы щелочноземельных элементов и магния не поглощают в УФ- области спектра, использовалась непрямая УФ- детекция с применением синтезированного УФ- поглощающего элюента 1,4- дипиридинийбутана бромида (ДПБ бромид). Так как галоген- ионы разрушают стальные части колонки, то бромид-ион 1,4- дипиридинийбутана заменили на ацетат- ион. При промывании колонки элюентом происходит замена противоиона модификатора- этилдиизопропиламмония на УФ- поглощающий ион 1,4- дипиридинийбутан. Разделение катионов осуществляли при оптимальной длине волны l = 260 нм на шкале 0,4 А в режиме “складывания шкалы”; полярность самописца меняли на обратную. Разделение всех изучаемых катионов достигнуто при ведении комплексообразующей добавки- щавелевой кислоты. Пределы обнаружения Mg2+, Ca2+, Sr2+, Ba2+ составляют 8 мкг/л; 16 мкг/л; 34 мкг/л; 72 мкг/л соответственно. В выбранных условиях проанализированы водопроводная вода, содержание Ca2+ в которой составляет 10,6 +1,9 мг-ион/л, Mg2+-2,5 + мг-ион/л. Ошибка воспроизводимости не превышает для Ca2+ -2,2%, для Mg2+– 1,4%.

Анализ комплексов кадмия в окружающей среде

Для изучения механизмов миграции тяжелых металлов в биосфере необходимы данные о химических формах существования металлов в природе. Сложности при анализе соединений одного из самых токсичных металлов - кадмия - связаны с тем, что он образует непрочные комплексы, и при попытке их выделить искажаются природные равновесия. В данной работе соединения кадмия в почве и растениях исследованы при помощи методики, основанной на хроматографическом разделении экстрактов с последующей идентификацией компонентов методами химического анализа. Такой подход позволил не только идентифицировать химические формы кадмия, но и прослеживать их трансформации в объектах окружающей среды.

С кадмием в объектах биосферы координируются ОН-группы углеводов и полифенолов (включая флавоноиды), С=О, фосфаты, NH2, NO2, SH-группы. Для целей настоящего исследования был составлен набор модельных лигандов, представляющих эти классы соединений. Взаимодействие модельных лигандов с водорастворимыми солями кадмия было исследовано методами УФ спектроскопии и ВЭЖХ.

Для выделения соединений кадмия использовали экстракцию специально подобранными (не образующими комплексов с Cd) растворителями. Так удается отделить кадмий от всех тяжелых металлов, кроме его близкого химического аналога – цинка. Кадмий- и цинк,содержащие пики на хроматограммах полученных экстрактов, выявляли при помощи связывания металлов в виде их дитизонатов. Для отделения от цинка использовали различие в устойчивости комплексов Cd и Zn при рН 6-8. Выделенные соединения Cd идентифицировали методом ВЭЖХ с изменением рН в процессе элюирования. Был выполнен анализ соединений кадмия с компонентами почв и тканей растений, а также идентифицированы вещества, вырабатываемые растениями в ответ на увеличение поступления кадмия из почвы. Показано, что у злаков защитными агентами являются флавоноиды, в частности трицин, у бобовых – алкоксипроизводные цистеина, у крестоцветных – как полифенолы, так и тиолы.

Перейти на страницу: 1 2 3 

Другие материалы

Проект нормативов предельно допустимых выбросов в атмосферу хлебопекарного предприятия Сдоба
Проект нормативов предельно допустимых выбросов (ПДВ) в атмосферу ОАО «Сдоба» разработан ООО «ЭКОиВ» согласно договору № 18 от 27 февраля 2010 г. Основой для разработки проекта нормативов ПДВ явились результаты инвентаризации выбросов загрязняющих веществ в атмосферу, проведенной согласно тому же договор ...